Subject Area
Computer and Control Systems Engineering
Article Type
Original Study
Abstract
Magnetic resonance jmaging (MRI) is an advanced medical imaging technique providing rich information about the human soft tissue anatomy. The goal of brain magnetic resonance image segmentation is to accurately identify the principal tissue structures in these image volumes. There are many methods that exist to segment the brain. One of these, conventional methods that use pure image processing techniques are not preferred because they need human interaction for accurate and reliable segmentation. Unsupervised methods, on the other hand, do not require any human interference and can segment the brain with high precision, in the light to this fact, we in this paper compare the performance of our image segmentation techniques in the subject of brain MR image. Results show that fuzzy Kohonen's Competitive Learning Algorithms performs better in terms of segmentation accuracy, while FCM performs better in terms of speed of computation
Recommended Citation
Riad, A.; Elminir, Hamdy; and Mostaffa, R.
(2020)
"Quantitative Comparison of Four Brain MRI Segmentation Techniques.,"
Mansoura Engineering Journal: Vol. 34
:
Iss.
1
, Article 6.
Available at:
https://doi.org/10.21608/bfemu.2020.125382